Is distributie niet leptokurtisch?

Is distributie niet leptokurtisch?
Is distributie niet leptokurtisch?
Anonim

De T-verdeling is een voorbeeld van een leptokurtische verdeling. Het heeft dikkere staarten dan de normale (je kunt ook naar de eerste afbeelding hierboven kijken om de dikkere staarten te zien). Daarom zullen de kritische waarden in een Student's t-toets groter zijn dan de kritische waarden van een z-toets. De t-verdeling.

Wat voor soort verdeling is de T-verdeling?

De T-verdeling, ook bekend als de Student-t-verdeling, is een type kansverdeling dat lijkt op de normale verdeling met zijn klokvorm, maar zwaardere staarten heeft. T-verdelingen hebben een grotere kans op extreme waarden dan normale verdelingen, vandaar de dikkere staarten.

Welke distributie is Leptokurtic?

Leptokurtische verdelingen zijn verdelingen met positieve kurtosis groter dan die van een normale verdeling. Een normale verdeling heeft een kurtosis van precies drie. Daarom zou een verdeling met kurtosis groter dan drie een leptokurtische verdeling worden genoemd.

Wat is een voorbeeld van een Leptokurtische verdeling?

Een voorbeeld van een leptokurtische verdeling is de Laplace-verdeling, die staarten heeft die asymptotisch langzamer nul naderen dan een Gauss-verdeling, en daarom meer uitbijters produceert dan de normale verdeling.

Hoe weet ik of mijn gegevens Platykurtic of Leptokurtic zijn?

K < 3 geeft een platykurtische verdeling aan (platter dan anormale verdeling met kortere staarten). K > 3 geeft een leptokurtische verdeling aan (meer gepiekt dan een normale verdeling met langere staarten). K=3 duidt op een normale "klokvormige" verdeling (mesokurtic). K < 3 geeft een platykurtische distributie aan.